

Knowledge, Attitudes and Practices in Issuing Antibiotics among Pharmacists in Ragama Medical Officer of Health area

Group B.2.2

D.M.Karunarathne, T.D.U.D. Karunathilake, L.M.B. Kodithuwakku, D.M.N.Kularathne, M.A.L.C.Kumari

INTRODUCTION

- Misusing antibiotics leads to serious negative consequences including antibiotic resistance and complications. (1) Pharmacists have a major role to play in its prevention.
- Ragama Medical Officer of Health (MOH) area hosts three large hospitals and daily attracts a considerable number of patients to the city.
- In Sri Lanka, issuing of pharmaceutical drugs is regulated via National Medical Regulatory Act and Cosmetic Device and Drugs Act (2) (3).

OBJECTIVES

- 1. To describe knowledge;
- 2. To describe attitudes;
- 3. To describe practices;
- 4. To determine the association between practices and knowledge;
- 5. To determine the association between self-reported and actual practices;

on issuing antibiotics among pharmacists in Ragama Medical Officer of Health area.

METHODOLOGY

Study design - A descriptive cross sectional study with an analytical component.

Study setting – Ragama MOH area.

Excel Software.

Study population - Pharmacists of the pharmacies in the Ragama MOH area

Sample size and sampling - All pharmacies in the Ragama MOH area (N=20) were included in the study. Thus sampling not done. **Data collection tools and procedures** – Data collection done from November to December 2019 using four visits to each pharmacy. Tools used were an interviewer administered questionnaire and three observation checklists for test purchasing.

- 1. Visit 1 Test purchasing 1 requesting an antibiotic by its name without a prescription
- 2. Visit 2 Test purchasing 2 requesting an antibiotic with an invalid prescription
- 3. Visit 3 Test purchasing 3 requesting an antibiotic by presenting a symptom
- 4. Visit 4 An interviewer administered questionnaire to assess knowledge, attitudes and self-reported practices

Data analysis – Descriptive statistics – to describe knowledge, attitudes and practices. Mann Whitney U test and Chi Square tests were used to compare actual practices with self-reported practices and knowledge level. Data analysis done by SPSS and Microsoft

Ethical issues – The pharmacies were given a prior notice three weeks prior to the test purchases. Informed written consent was obtained prior to administering the questionnaire.

RESULTS

Description of Study Participants

Table 1: Distribution of study participants based on sex and qualification status

Characteristic		Number (%)
Sex	Male	11 (55%)
	Female	9 (45%)
Qualification	Complete	14 (70%)
status	Not Complete	6 (30%)

Table 2: Distribution of participants based on age and working experience

Characteristic	Mean (SD)	Range
Age	39.6 (10.9)	24 - 62
Work experience	14.3 (9.9)	3.5 - 32

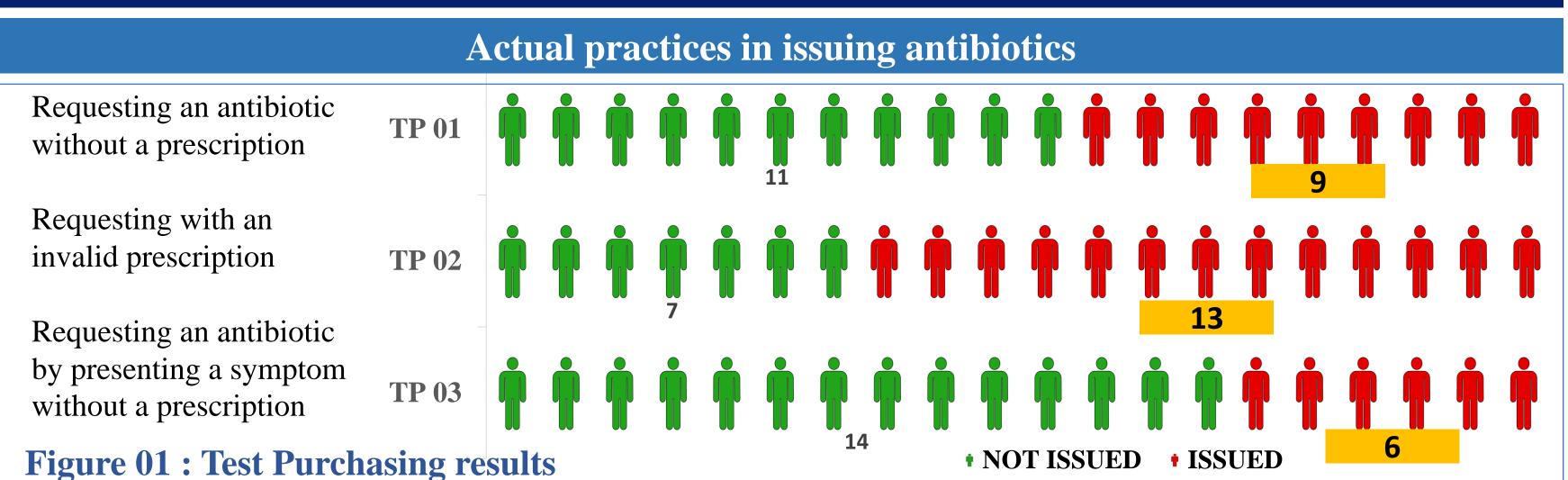
Table 3: Knowledge on Prescriptions **Correct responses Contents of a prescription** Name of the patient Age of the patient 100 Prescribed date 20 Brand name 20 Generic name The dose The schedule 20 100 Signature and the stamp 19 95

t resp	onses
t resp	onses
n	%
17	85
12	60
11	55
10	50
	17 12 11

Table 5: Knowledge regarding Antibiotics			
	Correct r	esponses	
Domain	n	%	
Effective for viral infections	9	45	
Effective for fungal infections	9	45	
Effective for bacterial infections	18	90	
Effective for parasitic infections	17	85	
Safe to use without prescribing	20	100	
Know antibiotics resistance	10	50	
Can cause side effects	20	100	

Table 6: Level of knowledge – Total scores			
Domain (Max)	Mean (SD)	Median	Range
Prescriptions (40)	37.6 (2.4)	36.0	32 - 40
Regulations (24)	16.5 (7.7)	18.0	4 - 24
Antibiotics (36)	24.5 (7.6)	24.0	13 - 36
Total (100)	78.6 (15.2)	76.0	54 - 100

. A
Knowledge level
was not associated
was not associated with the overall
test purchasing
performance


Association between practices and knowledge				
	Table 07: Actual pract	tice vs knowledge s	score	
4	Positive test purchases	Median (IQR)	Mean (SD)	
u	0	76 (71-96)	81.0 (13.2)	11 – 24
	1	92 (70-96.3)	85.5 (14.2)	U = 24 P = 0.447
	2	69 (64-92)	75.1 (14.4)	P=0.447
	3	68 (55-94)	72.5 (20.6)	

Practices in issuing antibiotics

Self reported practices in issuing antibiotics Table 8: Self reported practices among pharmacists

rable of Self reported practices among pharmacis		
Will issue	%	
3	15%	
3	15%	
1	05%	
7	11.7%	
	Will issue 3	

Self-reported practices (7/60; 11.7%) (Figure 04) differed significantly (X²=4.855; df=1; p=0.043) from the actual practice.

Four pharmacists issued antibiotics in all three test purchasing (N=20). (Figure 02)

*Antibiotic were issued in two test purchasings

Figure 02: Issuing antibiotics in test purchasing

When antibiotics were issued (n=28):
appropriate labelling - 15 (53.6%)

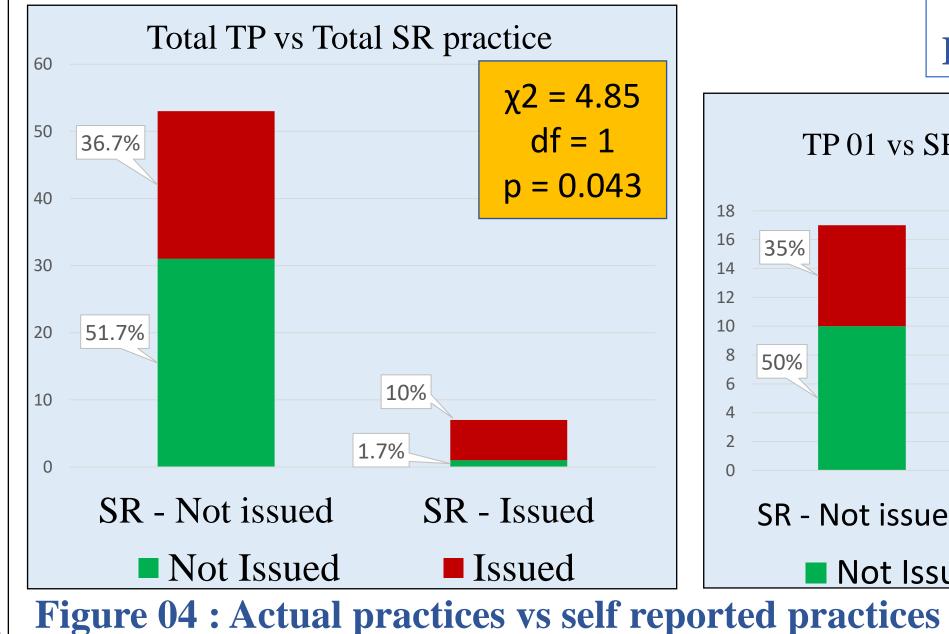
Figure 03: Attitudes in issuing

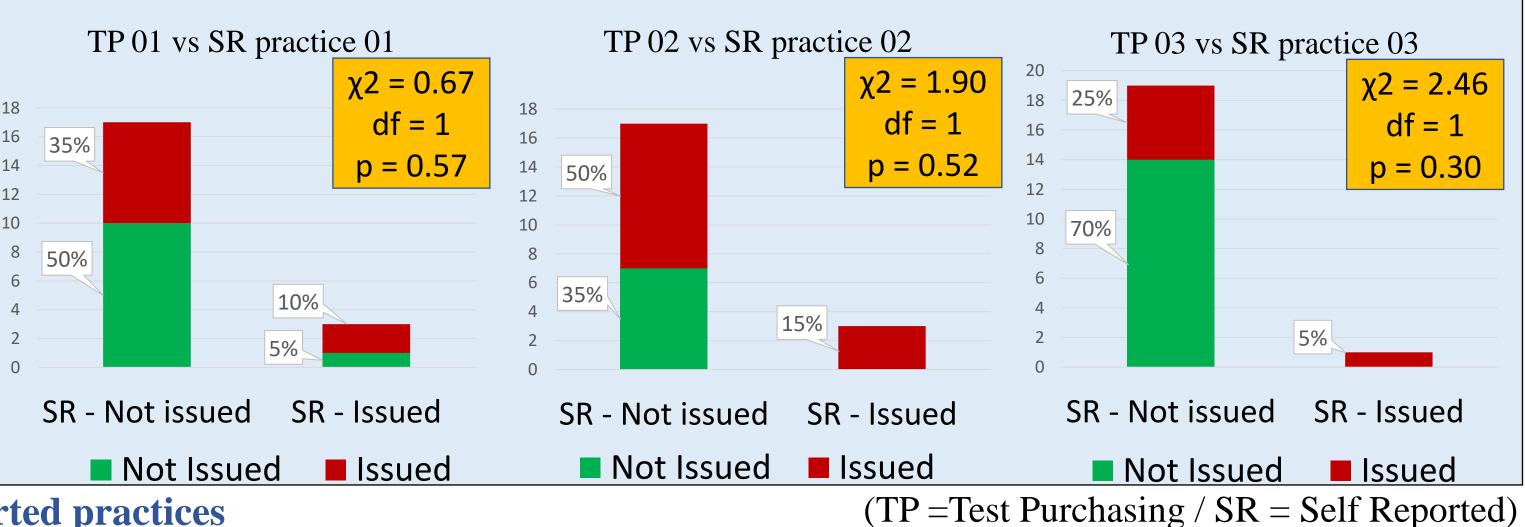
antibiotics

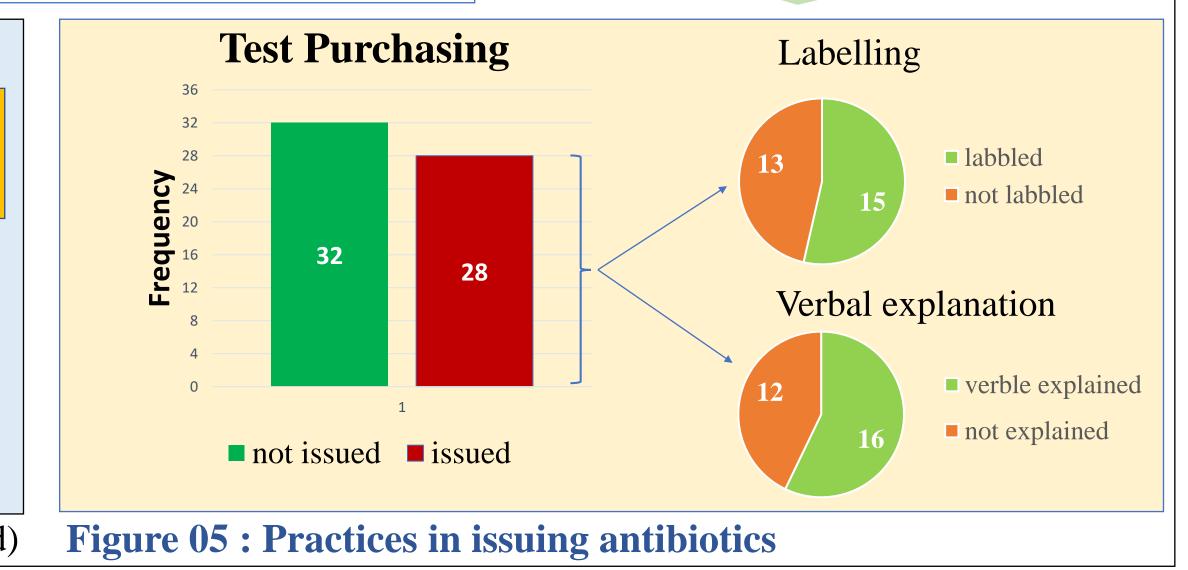
Attitudes in issuing antibiotics

The majority (n=14; 70%) believed

Prescription


Not Necessary


Necessary


that prescription is a necessity in

purchasing antibiotics.

appropriate labelling - 15 (53.6%) verbal instructions - 16 (57.1%). (Figure 05)

LIMITATIONS

The study was conducted in a single MOH area. This will limit generalization of results as the related context depend on the ground level implementation of regulations and monitoring of adherence.

CONCLUSIONS

Key knowledge components related to antibiotics was unsatisfactory even though the overall knowledge on prescriptions was satisfactory.

Actual practices were unsatisfactory and differed from self-reported.

RECOMMENDATIONS

Practices of the pharmacists should be regularly monitored and test purchasing can be useful in monitoring and improving issuing of antibiotics via private pharmacies.

REFFERENCES

- (1) Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance:
- (2) National medical regulatory act (NMRA Act) No 05 of 2015)
- (No 27 of 1980)

ACKNOWLEDGEMENT

- Dr. Chamila Meththananda, Department of pharmacology
- Dr. Lakmini Wijesooriya,
 Department of Microbiology,
- Mr. Bandara, Public Health Inspector, MOH-Ragama
- All the participants