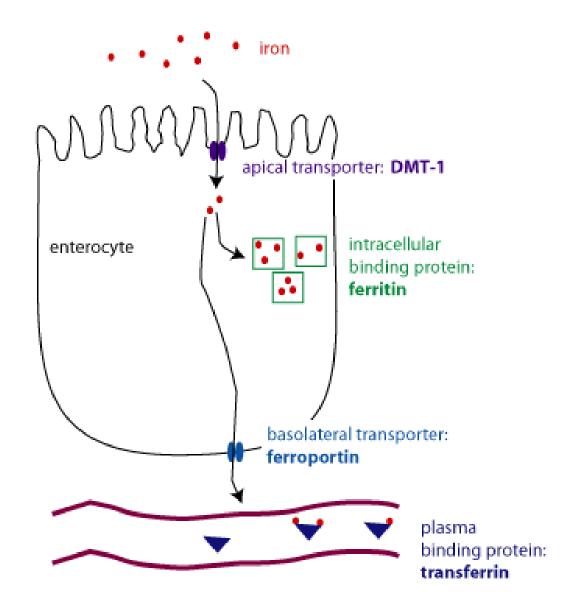
Iron Studies

Dr Roshitha de Silva Department of Pathology Faculty of Medicine University of Kelaniya

Objectives

- Iron homeostasis
- Serum iron
- TIBC
- TSAT
- Serum ferritin
- IDA
- Haemachromatosis

Body iron metabolism

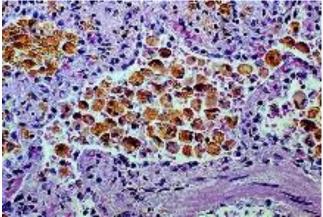

- Normal intake of iron 10-20 mg/d
- About 5-10% is absorbed
- Iron balance is regulated by gut absorption
- Limited capacity to alter the rate of iron excretion

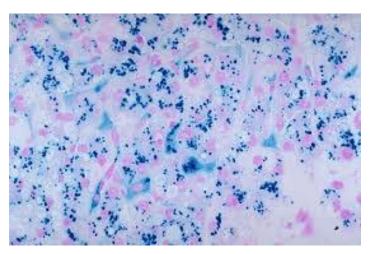
Rate of absorption

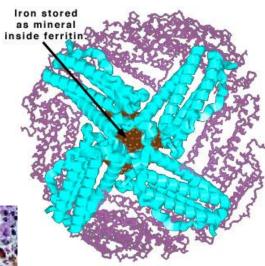
- Rate of erythropoiesis
- State of iron stores

- Contents of diet
 - Vit C, red meat
 - Antacids, ppi, calcium, eggs, cocoa, coffee, tea,
 Phytates
- Chemical state of iron (Fe³⁺<Fe²⁺)

Absorption at the cellular level




Transport, Storage


- Transported to plasma→transferrin→taken up by cells
 - Combine with haem \rightarrow Hb
 - Stored as ferritin (or haemosiderin)

Iron Distribution

- Haemoglobin
- Storage iron
 - Ferritin
 - Haemosiderin
- Tissue iron
- Myoglobin

Excretion

- Cells desquamated (skin/intestine)
- Menstruation/pregnancy
- Iron in faeces is exogenous
- Urine excretion is negligible

Lab assessment of iron status

- Serum iron
- Serum ferritin
- TIBC
- Transferrin saturation

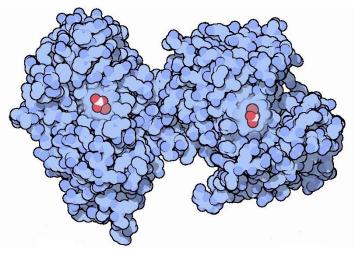
Serum iron

- Varies widely
- Diurnal variation (higher values in the morning)
- Menstrual cycle
- Pregnancy

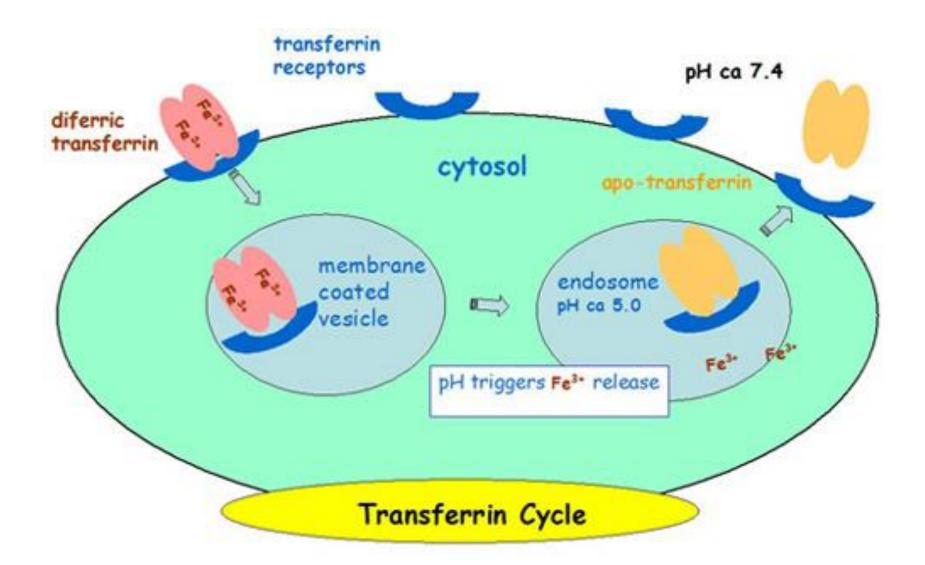
Serum iron

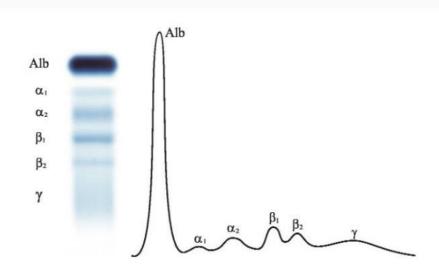
- Levels change (without changes in iron stores) in
 - Acute infections \checkmark
 - Trauma \downarrow
 - Chronic inflammatory disorders (RA) \downarrow
 - Malignant diseases \downarrow

Analysis


- Iron is released from transferrin by lowering the pH
- Reduced from Fe³⁺ to Fe²⁺
- Complexed with a chromogen
 - Bathophenanthroline
 - Ferrozine
- Measurement of absorption

Analysis


- Addition of acid to serum
 - Release iron from transferrin
 - Reduced from Fe³⁺ to Fe²⁺
 - Precipitates serum proteins
- Interference
 - Haemolysis
 - Copper thiourea

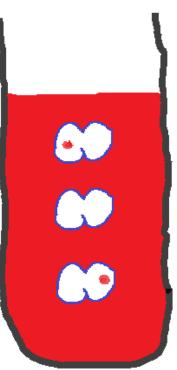

Transferrin

- Transferrin is the carrier protein which binds iron in serum.
- Binds iron very tightly but reversibly (apoT when not bound to iron)
- About 30% of the binding sites are occupied
- Increases in iron deficiency
- Decreases in
 - acute phase response
 - chronic liver disease

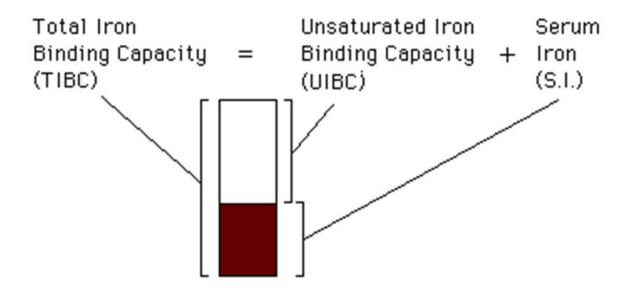
Transferrin

Albumin

α1-Antitrypsin α1- Acid Glycoprotein α2-Macroglobulin Ceruloplasmin Haptoglobins α-Lipoproteins

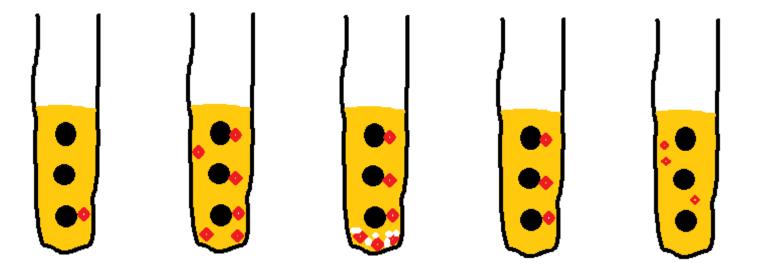

Hemopexin Transferrin Plasminogen β-Lipoprotein

C3


Fibrinogen Immunoglobulins C Reactive protein

TIBC

- Indirect measure of transferrin
- Ability of transferrin to bind iron
- The maximum amount of iron that T can bind



Serum Iron and Iron Binding Capacity

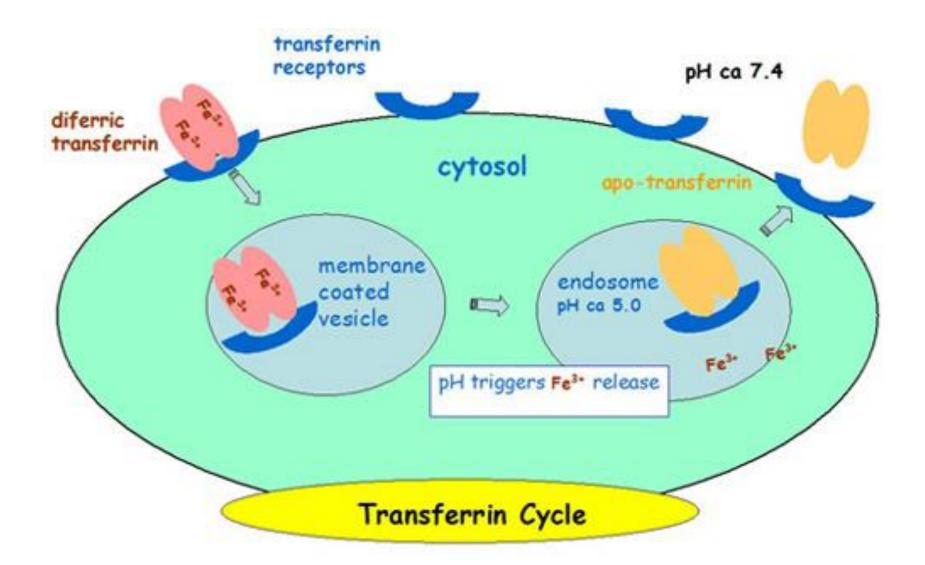
TIBC

- Analysis
 - Add sufficient Fe³⁺ to saturate iron binding sites
 - Then excess Fe^{3+} is removed (MgCO₃)
 - Measure iron

TIBC results interpretation

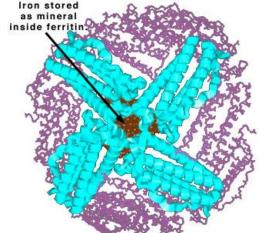
Condition	Serum iron	Transferrin & TIBC
Iron deficiency anaemia	Low	High
Anaemia of chronic disease	Low	Low
Pregnancy, OCP	Normal	High

Transferrin saturation


- (Serum iron/TIBC) x 100
- less than 20% iron deficiency
- more than 50% iron overload

• In inflammation??

Serum Transferrin Receptor

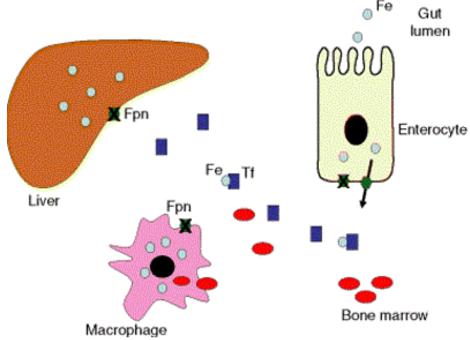

- Immature red cells in BM got lot of TR on their membrane.
- The number of TR ↑ses in iron def and ↓ses in iron OL
- This is seen in serum TR
- But it reflects the amount of erythropoietic activity rather than the iron status

Transferrin

Serum ferritin

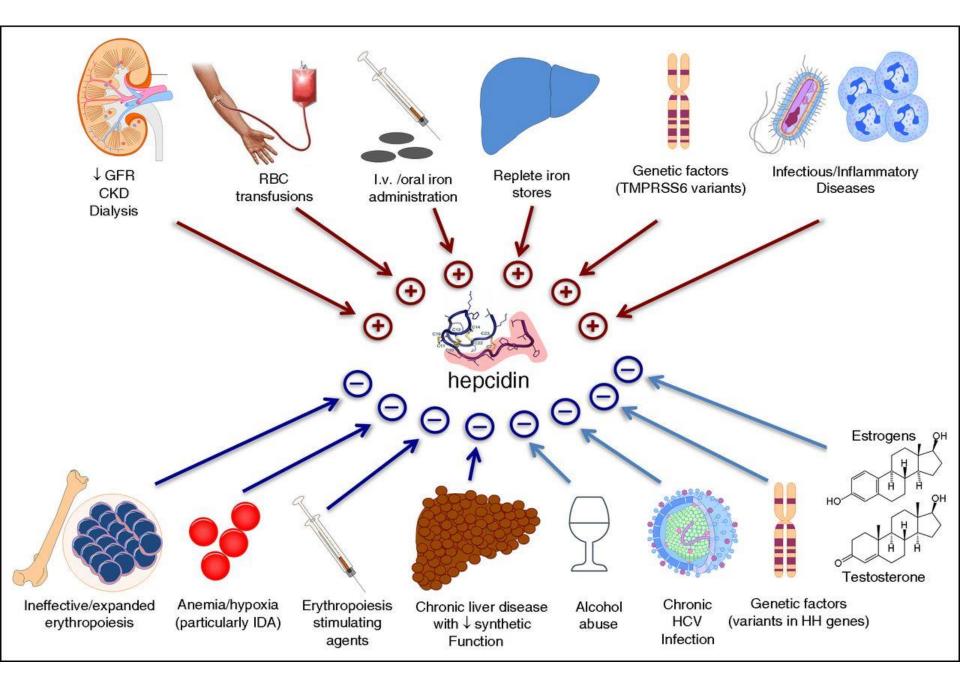
- Consist of protein shell and an iron core
- Found in all cells in the body-hepatocytes, macs in BM
- Very little amount is in the serum. This amount is proportional to the total body stored iron

Serum ferritin


- Closely related to body iron stores
- Low level indicates depleted iron stores
 Sensitive and specific indicator of iron deficiency
- High serum ferritin
 - 10% iron overload
 - 90% Chronic alcohol consumption, metabolic syndrome, obesity, diabetes, malignancy, infection and inflammatory conditions
 - normal STFR rules out iron overload

Ferritin analysis

• Immunoassay

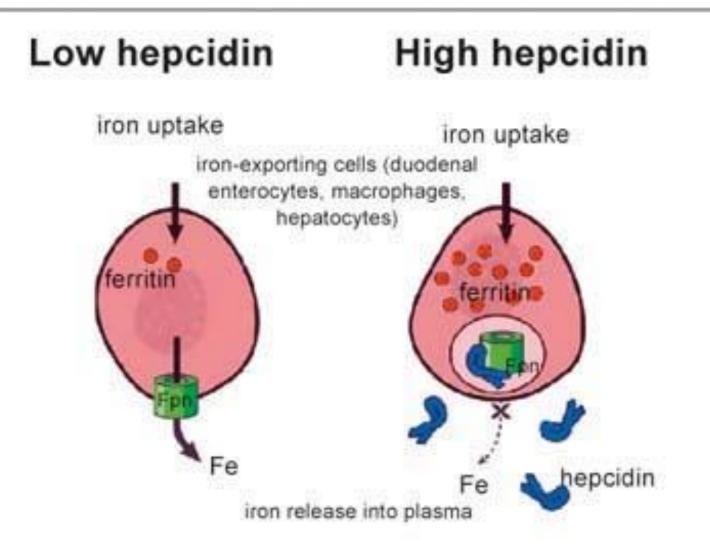

Ferroportin

- Transmembrane iron transporter
- Exports iron into the plasma from the duodenum, macrophages and hepatocytes
- Iron is then bound to transferrin

Hepcidin

- Hepcidin, produced in hepatocytes, is the key regulator of iron homeostasis
- It is a negative regulator of iron release from macrophages (red cell processing and iron recovery, iron store), hepatocytes (iron store) and enterocytes (iron absorption)

Action of Hepcidin


Elevated storage iron

liver synthesizes hepcidin

feeds back to the GIT

Prevent iron absorption

Figure 1 - Mechanism of hepcidin-mediated cellular iron regulation

Anaemia of Chronic Disease

- Seen in chronic infection, chronic inflammation and malignancy
- Hb values typically 9.5-10.5 g/dL

	IDA	ACD
Serum iron	Low	Low
TIBC	High	Low
TSAT	Very low	Low
Ferritin	Low	High/Normal
ESR	Normal	High
CRP	Normal	High

Case 1

- 30 year old female presented with general symptoms of anaemia and her lab results are as follows:
 - Haemoglobin 10 g/L
 Serum Iron 15 μmol/L (5-25μmol/L)
 TRF 3.4 g/L (2.0-3.5g/L)
 T SAT 15 % (5-35%)
 Serum Ferritin 7 μg/L (20-200μg/L)

Case 2

 A 47 year old farmer presents with tiredness.
 His iron studies show the following abnormalities:

– Serum Iron	40 µmol/L	(5-30µmol/L)
— TRF	2.2 g/L	(2.0-3.2g/L)
— T SAT	73 %	(10-45%)
– Serum Ferritin	128 µg/L	(30-500µg/L)

Case 3

- A 57 year-old man who is a chronic alcoholic presents to his GP with tiredness. His LFTs show few abnormalities and his iron studies were also abnormal:
 - T.protein 67 g/L (63-80g/L) Albumin 38 g/L (34-45g/L)100 U/L (5-40 U/L) • ALT (10-40 U/L)67 U/L • AST 344 U/L • GGT (5-50 U/L)228 U/L (35-110 U/L) • ALP

Case 3 cont.

- Serum Iron
- TRF
- -TSAT
- Serum Ferritin

10 μmol/L (5-30 μmol/L)
 2.3 g/L (2.0-3.2 g/L)
 25 % (10-45 %)
 711 μg/L (30-500 μg/L)

Single best answer question 1

- Which condition is associated with the lowest percent saturation of transferrin?
 - A. Haemochromatosis
 - B. Anaemia of chronic disease
 - C. Iron deficiency anaemia
 - D. Non-iron deficiency anaemia
 - E. Pregnancy

Single best answer question 2

- Which condition is most often associated with a high serum iron level?
 - A. Nephrosis
 - B. Chronic infection
 - C. Polycythaemia vera
 - D. Noniron deficiency anaemia
 - E. Chronic inflammation

Single best answer question 3

- Which of the following is likely to occur first in iron deficiency anaemia?
 - A. Decreased serum iron
 - B. Increased TIBC
 - C. Decreased serum ferritin
 - D. Increased transferrin
 - E. Decreased MCV

MCQ

- Which statement regarding iron studies is/are true or false?
 - A. Ferritin is a beta globulin
 - B. Serum iron levels begin to fall before the body stores become depleted
 - C. A normal level of serum ferritin rule out iron deficiency
 - D. The commonest cause of high serum ferritin is iron overload
 - E. TIBC depends on serum iron and serum transferrin levels

Thank You